First published in 2005
© Qualifications and Curriculum Authority 2005

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:
QCA Orderline, PO Box 29, Norwich NR3 1GN
tel: 08700 606015; fax: 08700606017
email: orderline@qca.org.uk

Ma

Mathematics tests

KEY STAGE
3
ALL TIERS

2005

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 1 at all tiers. The paper 2 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 12 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;
- examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

Questions with a $U A M$ element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

The 2005 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at QCA.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating to marking of questions that involve money, time, algebra, coordinates, negative numbers or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...

The pupil's response does not match closely any of the examples given.	Markers should use their judgement in deciding whether the response corresponds with the statement of requirements given in the Correct response column. Refer also to the Additional guidance.
The pupil has responded in a non-standard way.	Calculations, formulae and written responses do not have to be set out in any particular format. Pupils may provide evidence in any form as long as its meaning can be understood. Diagrams, symbols or words are acceptable for explanations or for indicating a response. Any correct method of setting out working, however idiosyncratic, is acceptable. Provided there is no ambiguity, condone the continental practice of using a comma for a decimal point.
The pupil has made a conceptual error.	In some questions, a method mark is available provided the pupil has made a computational, rather than conceptual, error. A computational error is a slip such as writing $4 \times 6=18$ in an otherwise correct long multiplication. A conceptual error is a more serious misunderstanding of the relevant mathematics; when such an error is seen no method marks may be awarded. Examples of conceptual errors are: misunderstanding of place value, such as multiplying by 2 rather than 20 when calculating 35×27; subtracting the smaller value from the larger in calculations such as $45-26$ to give the answer 21; incorrect signs when working with negative numbers.
The pupil's accuracy is marginal according to the overlay provided.	Overlays can never be 100% accurate. However, provided the answer is within, or touches, the boundaries given, the mark(s) should be awarded.
The pupil's answer correctly follows through from earlier incorrect work.	Follow through marks may be awarded only when specifically stated in the mark scheme, but should not be allowed if the difficulty level of the question has been lowered. Either the correct response or an acceptable follow through response should be marked as correct.
There appears to be a misreading affecting the working.	This is when the pupil misreads the information given in the question and uses different information. If the original intention or difficulty level of the question is not reduced, deduct one mark only. If the original intention or difficulty level is reduced, do not award any marks for the question part.
The correct answer is in the wrong place.	Where a pupil has shown understanding of the question, the mark(s) should be given. In particular, where a word or number response is expected, a pupil may meet the requirement by annotating a graph or labelling a diagram elsewhere in the question.

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed or rubbed out and not replaced.	Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.	
More than one answer is given.	If all answers given are correct or a range of answers is given, all of which are correct, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money For example: $£ 3.20 \quad £ 7$	
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), $£ 320, £ 3,20$, 3 pounds 20, $£ 3-20$, £3 20 pence, $£ 3: 20$, £7.00 \checkmark The $£$ sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg 320p, 700p	x Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 eg $£ 3.2, £ 3200, f 320$, £3-2-0, £7.0

Responses involving time

A time interval For example: 2 hours 30 mins

Accept $\sqrt{ }$	Take care ! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2 h 30 \checkmark Digital electronic time ie 2:30	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used.
A specific time For example: 8.40am, 17:20	
Accept $\sqrt{ }$	Do not accept \times
\checkmark Any unambiguous, correct indication eg 08.40, 8.40, 8:40, 0840, 840 , 8-40, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as $5: 20 \mathrm{pm}, 17: 20 \mathrm{pm}$	x Incorrect time eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving the use of algebra For example: $2+n \quad n+2 \quad 2 n \quad \frac{n}{2} \quad n^{2}$	
Accept \checkmark	Take care ! Do not accept \times
```\checkmark Unambiguous use of a different case or variable eg N used for } x used for }```	! Unconventional notation $\text { eg } \begin{aligned} & n \times 2 \text { or } 2 \times n \text { or } n 2 \\ & \text { or } n+n \text { for } 2 n \\ & n \times n \text { for } n^{2} \\ & \\ & n \div 2 \text { for } \frac{n}{2} \text { or } \frac{1}{2} n \\ & \\ & 2+1 n \text { for } 2+n \\ & 2+0 n \text { for } 2 \end{aligned}$   Within a question that demands simplification, do not accept as part of a final answer involving algebra. Accept within a method when awarding partial credit, or within an explanation or general working.   $\times$ Embedded values given when solving equations   eg in solving $3 x+2=32$, $3 \times 10+2=32 \text { for } x=10$   To avoid penalising the two types of error below more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.
$\checkmark$ Words used to precede or follow equations or expressions   eg $t=n+2$ tiles or   tiles $=t=n+2$   for $t=n+2$	! Words or units used within equations or expressions   eg $n$ tiles +2 $n \mathrm{~cm}+2$   Do not accept on their own. Ignore if accompanying an acceptable response.
$\checkmark$ Unambiguous letters used to indicate expressions   eg $t=n+2$ for $n+2$	$\times$ Ambiguous letters used to indicate expressions eg $n=n+2$ for $n+2$


Responses involving coordinates For example: $(5,7)$	
Accept $\checkmark$	Do not accept $\times$
$\begin{aligned} & \checkmark \text { Unconventional notation } \\ & \text { eg }(05,07) \\ &(\text { five, seven }) \\ &(5, y) \\ &(x=5, y=7) \end{aligned}$	x Incorrect or ambiguous notation   eg $(7,5)$   $\binom{y, x}{5}$   ( $5 x, 7 y$ )   $\left(5^{x}, 7^{y}\right)$   $(x-5, y-7)$

## Responses involving negative numbers

For example: -2

Accept $\checkmark$	Do not accept $\times$
To avoid penalising the error below   more than once within each question,   do not award the mark for the first   occurrence of the error within each   question. Where a question part   carries more than one mark, only the   final mark should be withheld.   $\times$ Incorrect notation   eg 2-	

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.
For example: 0.7 or $\frac{7}{10}$ or $70 \%$
$\left.\begin{array}{|c|l|}\hline \text { Accept } \checkmark & \begin{array}{l}\text { Take care ! Do not accept } \times\end{array} \\ \hline \begin{array}{l}\text { eq Equivalent decimals, fractions and } \\ \text { percentages }\end{array} & \begin{array}{l}\text { The first four categories of error below } \\ \text { should be ignored if accompanied by } \\ \text { an acceptable response, but should } \\ \text { not be accepted on their own. } \\ \text { However, to avoid penalising the first } \\ \text { three types of error below more than } \\ \text { once within each question, do not }\end{array} \\ \text { award the mark for the first } \\ \text { occurrence of each type of error } \\ \text { unaccompanied by an acceptable } \\ \text { response. Where a question part } \\ \text { carries more than one mark, only the } \\ \text { final mark should be withheld. }\end{array}\right\}$

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers 3-5 and 4-6.
A total of 121 marks is available in each of tiers 5-7 and 6-8.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website www.qca.org.uk/ from Monday 20 June 2005. QCA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the external marking agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

## BLANK PAGE



Tier \& Question				Making 24
3-5 4-6	5-7 $6-8$			
2			Correct response	Additional guidance
		2m   or   1m	Gives three different correct pairs of numbers eg $\begin{array}{r} 2 \times 12 \\ 3 \times 8 \\ 4 \times 6 \\ -\quad 24 \times 1 \\ 12 \times 2 \\ 6 \times 4 \end{array}$   Gives two different correct pairs of numbers	$\checkmark$ Fractions, decimals or negative numbers   ! For $2 m$ or 1m, correct pair of numbers repeated, but in reverse order Do not accept as a different correct pair


Tier \& Question				Write a number
3-5 4-6	5-7 $6-8$			
3			Correct response	Additional guidance
a		1m	Gives a value that is greater than 1000, but less than 1100 eg   - 1001   - 1099	$\checkmark$ Fractions or decimals   $\mathbf{x}$ For part (a), number given in words
b		1m	Gives a decimal that is greater than 0 , but less than 1 eg   - 0.5   - 0.12   - Point two	$\times$ For part (b), number given as a fraction





				Food and drink
Tier \& Question     3-5 4-6 $5-7$ $6-8$				
7			Correct response	Additional guidance
a		1m	£ 1.55	
b		$\begin{array}{\|c\|\|} \hline 2 \mathrm{~m} \\ \\ \\ o r \\ 1 \mathrm{~m} \\ \hline \mathrm{U} 1 \\ \hline \end{array}$	Indicates the correct item of food and the correct drink, ie   Pizza and juice, in either order   Shows the digits 24(0)	$\checkmark$ Unambiguous indication eg - P, J




Tier \& Question						
3-5		5-7 6	6-8			
10	3				Correct response	Additional guidance
a	a			1 m	10.2 or equivalent	
b	b			1m	9.5 or equivalent	
c	c			1 m	1270	
d	d			1m	57	



Tier \& Question						Range of ages
3-5	4-6	5-7 6	6-8			
12	5				Correct response	Additional guidance
a	a			1m	Gives two ages with a difference of 7 years eg   - 1 and 8   - 7 and 14   - 7 and 0   - 20 and 13	! Ages given using part-years Accept provided the difference is 7 years eg, accept   - 6 months and $7 \frac{1}{2}$
b	b			1m	0	! Response given in words   Accept provided there is no ambiguity   eg, accept   - Zero   - Nothing   eg, do not accept   - No range   ! Units amended   Accept responses giving a short time interval eg, accept   - A few minutes   - A couple of hours


Tier \& Question					Placing fractions
3-5	4-6 5	5-7 $6-8$			
13	6			Correct response	Additional guidance
			$2 \mathrm{~m}$   or   1m	Gives all four fractions in the correct positions, ie   Gives at least two fractions in the correct positions   or   Converts at least three of the four correct values into a form enabling comparison, even if the positions are incorrect and there are other errors   eg   - At least three of: $\frac{90}{120}, \frac{15}{120}, \frac{40}{120}, \frac{72}{120}$   - At least three of: $0.75,0.125,0.33,0.6$   - $\frac{30}{40}, \frac{5}{40}, \frac{24}{40}$   - $\frac{18}{24}, \frac{3}{24}, \frac{8}{24}$   - $\frac{45}{60}, \frac{20}{60}, \frac{36}{60}$	$\checkmark$ Unambiguous indication of fractions For $\frac{1}{3}$ as a decimal, accept 0.33 or better For $\frac{1}{8}$ as a decimal, accept 0.13 or better eg, for 2 m accept



Tier \& Question						Percentages
3-5	4-6	5-7	6-8			
15	8	1			Correct response	Additional guidance
a	a	${ }^{\text {a }}$			7   50	! For the first mark, 'out of 10 ' repeated eg - $\frac{7}{10}$   Condone
b	b	b		1m   1m	Completes the sentence correctly with two values that are in the ratio $1: 20$   eg   - 1 out of 20   - 5 out of 100   - 0.5 out of 10   - 10 out of 200   - 2.5 out of 50   Completes the sentence correctly, in a different way from one previously credited	! Follow through   Accept as two values in the same ratio as their two values for the first mark, provided their first value < their second value eg, from their first mark as 1 out of 5 accept - 2 out of 10





Tier \& Question				Mean and median		
3-5	4-6	5-7	6-8			
19	12	5			Correct response	Additional guidance
a	a	a		1m	Shows that the mean is 10 eg   - $9+11+10=30$, $30 \div 3$   - $(9+11+10) \div 3$   - 10 is already 10 , then 9 is 1 below and 11 is 1 above	$\checkmark$ Minimally acceptable explanation   eg   - $30 \div 3$   - $30 \div 10=3$   - $9+11=20,20 \div 2$   - Add one to 9 and take one off 11   - 10 is halfway between 9 and 11   $\checkmark$ Method described   eg   - You add them up then divide by how many there are   $\times$ Incorrect statement   eg   - $9+10+11 \div 3=10$   - $3 \div 30=10$
				1 m	Gives a correct explanation of why the median is 10 eg   - 10 is the middle number when the numbers are in order   - The median is the middle number when the numbers go from smallest to largest	$\checkmark$ Minimally acceptable explanation eg   - It is the middle number   - It's the middle largest   - It's the second smallest   - $9 \longdiv { 1 0 } 1 1$   - It is in between   $\times$ Incomplete or incorrect explanation eg   - $9 \quad 10 \quad 11$   - 10 is halfway between 9 and 11
b	b	b			Gives four values that total 40 and whose middle two numbers, when ordered, add to 20, with none of the values being 10 eg	$\checkmark$ Fractions, decimals and negatives




Tier \& Question					Long multiplication
3-5 4-6	5-7 6	6-8			
2215	8			Correct response	Additional guidance
			$\begin{gathered} 2 \mathrm{~m} \\ \\ o r \\ 1 \mathrm{~m} \end{gathered}$	Shows a complete correct method with not more than one computational error eg   - $3740+3740+374 \times 3=7480+1122$   - $\quad 374$ $\begin{aligned} & \frac{23}{1126} \text { (error) } \\ & \frac{7480}{8606} \end{aligned}$	$\times$ Conceptual error $\text { eg } \begin{array}{r} 374 \\ +\quad 23 \\ \hline 1122 \\ \hline 148 \\ \hline 1870 \\ \hline \end{array}$




Tier \& Question					Making zero
3-5 4-6	5-7	6-8			
18	11	3		Correct response	Additional guidance
a	a	a	1 m	Indicates only the second statement, ie	
b	b	b	1 m	Indicates that the other number is zero eg   - 0   - Zero	$\checkmark$ Minimally acceptable indication eg   - $0+0$   - Same   ! Use of negative sign   eg $\text { - }-0$   Condone
			1m   U1)	Gives a correct pair of non-zero values that add to make zero eg   - 1 and -1   - -45 and +45   - $x$ and $-x$	$\times$ Operation changed   eg   - 1 - 1 ['and' crossed out]



Tier \& Qu		Dividing fractions		
201	135		Correct response	Additional guidance
		3 m or 2 m	Gives the first value as 2 and the second value as 6   Gives an incorrect or omitted first value but correctly gives the second value as 6   or   Gives an incorrect first value but follows through correctly for the second value as their first value $\times 3$, provided their first value is a positive integer eg   - first value: 4   second value: 12   or   Gives the correct first value and shows or implies a correct method for the second value with not more than one computational error eg   - $2 \times 3$   - $3 \div 0.5$   - $\frac{3}{4} \times \frac{8}{1}$   - $\frac{24}{4}$   - $\frac{6}{8} \div \frac{1}{8}$   - Answer of $\frac{6}{8}$ or equivalent, with no evidence of an incorrect method   -   Gives an incorrect or omitted first value but shows or implies a correct method for the second value with not more than one computational error	$\checkmark$ For the second value $\frac{6}{1}$   ! Eighths repeated   Accept as the final answer for the first value eg, for the value 2 accept   - $\frac{2}{8}$   Do not accept as the final answer for the second value   eg, for the value 6 do not accept   - $\frac{6}{8}$   $\times$ For $2 m$ or 1m, conceptual error   eg $\frac{6}{8} \div \frac{1}{8}=\frac{5}{8}$   ! For 1m, follow through   For 1 m , accept follow through as the intention to multiply their first value by 3 shown or implied   eg, accept   - first value: $\frac{4}{8}$ second value: $1 \frac{1}{2}$ or equivalent   - first value: $\frac{4}{8}$   then $\frac{4}{8} \times 3$ seen




Tier \& Question					Speed bumps
3-5 4-6	5-7	6-8			
23	16	8		Correct response	Additional guidance
	a	a	2m   or   1m	Completes both sentences correctly, with all four values in the correct positions, ie $46$   12   3   Gives at least two values in the correct positions   or   Shows the values $46,12,35$ and 3 , even if their positions are incorrect	! Throughout the question, key not interpreted eg, for the value 46 $\text { - } 416$   Penalise only the first occurrence
	b	b	1 m	Gives a correct justification eg   - $38-28=10$   - It falls from 38 to 28	$\checkmark$ Minimally acceptable justification   eg   - 38 and 28 identified, with no evidence of an incorrect method   ! Ambiguous notation   eg   - $28-38$   Condone   $\times$ Incomplete or incorrect justification   eg   - The difference between the middle numbers before and after is 10   - Indicates both values of 8 corresponding to the units of 38 and 28 on the diagram, but with no interpretation of the key   - Before the median was 39 , after the median was 29 , so it fell by 10


Tier \& Question			Refer to the new algebra general guidance		Straight line graph
3-5 4-6		6-8			
24	17	9		Correct response	Additional guidance
a	a	a	1m	Indicates that the $y$-coordinate is 146	$\checkmark$ Indication is within a pair of correct coordinates   eg, for part (a)   - $(50,146)$   eg, for part (b)   - $(18,50)$
b	b	b	1 m	Indicates that the $x$-coordinate is 18	! Answers to parts (a) and (b) transposed but otherwise correct Mark as 0,1
	c	c	1 m	Indicates Yes and gives a correct explanation with no evidence of incorrect working eg   - When $\begin{aligned} x=-10, y & =3 \times-10-4 \\ & =-30-4 \\ & =-34 \end{aligned}$   - $\begin{aligned} 3 x-4 & =-34 \\ 3 x & =-30 \\ x & =-10 \end{aligned}$	$\checkmark$ Minimally acceptable explanation   eg   - $-30-4=-34$   - $-30 \div 3=-10$   -When $x=-10,3 x-4=-34$   - The second number is equal to the first number multiplied by 3 , minus 4   $\times$ Incomplete or incorrect explanation eg   -When $x=-10, y=-34$   - $3 x-4=-34$ $\begin{aligned} 3 x & =-34-4 \\ 3 x & =-30 \\ x & =-10 \end{aligned}$


Tier \& Question						64
3-5 4-6 5	5-7	6-8				
	18	10		Correct response	Additional guidance	
			3 m   or 2m   or   1m	Gives four different correct pairs of values for $x$ and $y$ eg   Gives three different correct pairs of values for $x$ and $y$, even if there are errors, omissions or repeats   Gives two different correct pairs of values for $x$ and $y$, even if there are errors, omissions or repeats		



Tier \& Question					
3-5 4-6	5-7	6-8			Tyres
	20	12		Correct response	Additional guidance
	a	a	1 m	5	
	b	b	1m	Gives a value between 3500 and 5500 inclusive	! Incorrect units inserted eg   - 5000 miles   Ignore


Tier \& Question		Refer to the new algebra general guidance		Which triangles?
3-5 4-6 5	5-7 6			
	211	13	Correct response	Additional guidance
	a a	a 1 m	Indicates the correct triangle, ie $\qquad$   and   gives a correct equation linking $a, b$ and $c$ for the other triangle eg   - $a^{2}+c^{2}=b^{2}$   - $b^{2}-a^{2}=c^{2}$   - $b^{2}-c^{2}=a^{2}$   - $b=\sqrt{a^{2}+c^{2}}$	
	b b	b 1 m	Indicates the correct triangle, ie   and gives a correct explanation for the other triangle   The most common correct explanations:   State or imply that the third angle in the triangle on the right is not $90^{\circ}$   eg   - $180-75-25=80$ not 90 , so you can't use Pythagoras' Theorem   - Angle C is not 90, so it's not a right-angled triangle   Show that if the third angle in the triangle on the right were $90^{\circ}$, the triangle would not be possible   - If the missing angle is 90 , the angles add up to 190 not 180	$\checkmark$ Minimally acceptable explanation   eg   - Not 90   - Not a right angle   - It only works when it's right-angled   $\times$ Incomplete explanation that does not refer explicitly to $90^{\circ}$   eg   - $180-75-25=80$   - You can't use Pythagoras' Theorem   - The angles are wrong   $\checkmark$ Minimally acceptable explanation   eg   - If you put 90 in you don't get 180   - A right-angled triangle is impossible with those angles, they should make 180   - The angles add up to 190 [right angle marked on right hand triangle]   - They add up to 100 not 90   $\times$ Incomplete explanation that does not refer explicitly to $90^{\circ}$   eg   - The angles would add up to 190 , not 180




Tier \& Question			Refer to the new algebra general guidance		Simultaneous
3-5 4-6	5-7 6	6-8			
	24	16		Correct response	Additional guidance
			$3 m$      or   $2 m$   $o r$   $1 m$	Gives both $x=\frac{3}{2}$ or equivalent and $y=5$   and   shows a complete correct method for solving algebraically   eg   - $4 x+3 y=21$   $4 x+2 y=16$   so $y=5$   $2 x+5=8$ so $x=1 \frac{1}{2}$   - $4 x+3 y=21$   $6 x+3 y=24$   so $2 x=3$ therefore $x=1.5$ and $y=5$   - $2 x+y=8$   $2 x+2 y=13$   so $y=5$ and $x=\frac{3}{2}$   - $4 x+3(8-2 x)=21$   $24-2 x=21$   $x=1.5$, so $y=5$   Shows a complete correct method for solving algebraically with not more than one error eg   - $4 x+3 y=21$   $4 x+2 y=16$   so $y=4$ (error)   $2 x+4=8$ so $x=2$   - $4 x+3(8-2 x)=21$   $4 x+24-2 x$ (error) $=21$   $2 x=-3$   $x=-1.5$ and $y=11$ (or 9)   Forms two correct equations that would allow elimination of either $x$ or $y$   eg   - $4 x+3 y=21$   $4 x+2 y=16$   - $4 x+3 y=21$   $6 x+3 y=24$   or   Attempts to solve by substitution and forms a correct equation in either $x$ or $y$ eg   - $4 x+3(8-2 x)=21$   - $8-2 x=\frac{21-4 x}{3}$   - $8-y=10.5-1.5 y$	$\mathbf{x}$ Method used is trial and improvement   ! Only error is to use the wrong operation, spuriously eliminating either $\boldsymbol{x}$ or $\boldsymbol{y}$   eg $\begin{aligned} 4 x+3 y & =21 \\ 4 x+2 y & =16 \\ 5 y & =37, \text { so } y=7.4 \\ 2 x+7.4 & =8 \text { so } x=0.3 \end{aligned}$   Mark as 1, 1, 0   ! For 1m, equations subtracted without the second equation restated   Accept   eg, for 1 m accept   - $2 x+2 y=13$ seen



Tier \& Question					Star shapes
3-5 4-6	5-7 6	6-8			
		18		Correct response	Additional guidance
		a	1m	8	! Units given   Condone responses of 8 cm only
		b	1m	Gives a different pair of dimensions in the ratio $5: 2$ or $2: 5$ eg   - 2 and 5 (either order)   - 10 and 25 (either order)   - 1 and 2.5 (either order)   - 12 and 30 (either order)	$\mathbf{x}$ Dimensions of either given diagram Do not accept value 6 and 15 (either order) or 8 and 20 (either order)


Tier \& Question				Straight lines
3-5 4-6	5-7 $6-8$			
	19		Correct response	Additional guidance
	a	$1 \mathrm{~m}$ $1 \mathrm{~m}$	Gives A as $(0,-8)$   Gives B as $(2,0)$	! Answers for A and B transposed but otherwise completely correct If this is the only error, ie gives A as $(2,0)$ and gives $B$ as $(0,-8)$, mark as 0,1
	b	1m	Gives a correct equation for the straight line eg   - $y=2 x$   - $y-2 x=0$   - $x=\frac{y}{2}$	! Unconventional notation eg $\begin{aligned} & y=2 \times x \\ & -y=2 x+0 \end{aligned}$   Condone



Tier \& Question		Acorns (cont)		
3-5 4-6	5-7 $6-8$			
	20		Correct response	Additional guidance
	b	1 m	Indicates A and gives a correct explanation   The most common correct explanations:   Show or imply that the inter-quartile range for A is 5 and for $B$ is 4   eg   - For A the IQ range is $29-24=5$, for B the IQ range is $31-27=4$   - The distance between 24 and 29 is greater than that between 27 and 31   - The IQR is 1 mm bigger for group A   Indicates, in words or on the diagram, the sizes of the inter-quartile ranges for A and B eg   - The shaded box in A is longer than in B , so A has a bigger inter-quartile range   - The box for group A covers 6 whole numbers, but for B only 5	! Inter-quartile range referred to as 'range' Condone   eg, accept   - Range for $\mathrm{A}=5$, range for $\mathrm{B}=4$   - The boxes show the range and A's is longer   $\checkmark$ Minimally acceptable explanation   eg   - 5, 4   - $29-24>31-27$   - 1 more   $\times$ Incomplete or incorrect explanation   eg   - 5 is the larger inter-quartile range   - $31-27$ is less   - The inter-quartile range for A is 4 cm and for B is 3.2 cm [scale ignored]   $\checkmark$ Minimally acceptable explanation   eg   - The box is bigger   - Distances between lower and upper quartiles for both A and B indicated   - It covers 6 numbers, the other covers 5
	c		Gives a correct reason   The most common correct reasons:   Refer to possible differences in the conditions of the two samples   eg   - The two groups could have collected the samples at different times of year   - Group A could have picked from one side of the tree and group B from the other side   - One group could have picked from the tree, the other from the ground   - Group B may have collected first and taken most of the larger ones   Refer to possible differences in the sizes of the two samples   eg   - One group could have collected a much larger number of acorns than the other   - One sample may be less representative as they didn't collect enough	$\checkmark$ Minimally acceptable reason   eg   - Different times   - Different areas of the tree   - B's acorns may have had more sunlight   $\times$ Incomplete or incorrect reason   eg   - Different areas   - They used different trees   $\checkmark$ Minimally acceptable reason   eg   - Different numbers of acorns   - You don't know how many acorns   $\mathbf{x}$ Incomplete reason   eg   - You don't know how many   - One group could have spent longer   - There could have been more people to collect acorns in one of the groups


Tier \& Question		Standard form		
3-5 4-6	5-7 7 6-8			
	21		Correct response	Additional guidance
	a	1m	Gives a correct justification eg $\begin{aligned} \left(4 \times 10^{8}\right) \times\left(8 \times 10^{4}\right) & =(4 \times 8) \times\left(10^{8} \times 10^{4}\right) \\ & =32 \times 10^{12} \\ & =3.2 \times 10^{13} \end{aligned}$   - $4 \times 8=32,8+4=12$, so you get $32 \times 10^{12}=3.2 \times 10^{13}$   - $400000000 \times 80000=32000000000000$ $=3.2 \times 10^{13}$	$\checkmark$ Minimally acceptable justification   eg   - $32 \times 10^{12}$   - $4 \times 8 \times 10^{12}$   - $400000000 \times 80000$ $=32000000000000$ [12 zeros shown]   $\times$ Incomplete justification   eg   - $32000000000000=3.2 \times 10^{13}$   - $400000000 \times 80000=3.2 \times 10^{13}$   - $(4 \times 8) \times\left(10^{8} \times 10^{4}\right)=3.2 \times 10^{13}$
	b	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	$5 \times 10^{3}$   Shows a value equivalent to $5 \times 10^{3}$   eg   - 5000   - $0.5 \times 10^{4}$   - $\frac{10^{4}}{2}$   or   Shows or implies a correct method that demonstrates understanding of how to process the indices and places the multiplication symbol correctly, with not more than one error eg   - $4 \div 8 \times 10^{(8-4)}$   - $4 \times 10^{8} \div 8 \times 10^{4}=2$ (error) $\times 10^{4}$	! Zero(s) given after the decimal point within standard form notation Condone eg, for 2 m accept   - $5.000 \times 10^{3}$


Tier \& Question				Data sets
3-5 4-6	5-7 6-8			
	22		Correct response	Additional guidance
			Gives both correct values, ie $\text { median }=90 \quad \text { mean }=97$   Gives one correct value   or   Shows the value 9700	! Incomplete processing Condone eg, for 2 m accept   - median $=90 \quad$ mean $=95+2$

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Tier \& Question} \& \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Marking overlay available}} \& \multirow[t]{2}{*}{Drawing a rhombus} <br>
\hline 3-5 4-6 \& 5-7 6-8 \& \& \& <br>
\hline \& 23 \& \& Correct response \& Additional guidance <br>
\hline \& \& $2 m$

or

1 m \& \begin{tabular}{l}
Draws a correct rhombus that fulfils all three of the following conditions: <br>
1. Ruled <br>
2. Correct intersecting construction arcs for at least one vertex, using compasses at either 8 cm and 10 cm or 8 cm and 8 cm , within the tolerances as shown on the overlay <br>
3. Vertices within the tolerances as shown on the overlay <br>
Gives a response that fulfils either condition 2 or condition 3

 \& 

! Different orientations <br>
Markers should rotate and/or turn over the overlay as appropriate in order to check tolerances for construction arcs and/or vertices <br>
! Arcs extended or extra arcs Ignore inaccuracies in sections of arcs extending beyond the tolerances as shown on the overlay, or arcs not indicated on the overlay, even if incorrect <br>
! Spurious arcs Do not accept as correct arcs drawn without compasses
\end{tabular} <br>

\hline
\end{tabular}

Tier \& Question		Refer to the new algebra general guidance		$a$ and b
3-5 4-6	5-7 6-8			
	24		Correct response	Additional guidance
			Gives a correct justification   eg $\begin{aligned} b+b+2 & =b(b+2) \\ 2 b+2 & =b^{2}+2 b \\ 2 & =b^{2} \end{aligned}$   $b=\sqrt{ } 2$ which is not an integer, so $a$   cannot be an integer either $2 a-2=a^{2}-2 a$   $a^{2}-4 a+2=0$ which doesn't factorise, so $a$ is not an integer   Shows correct expressions for the sum and product of $a$ and $b$ using only one of the two variables   eg   - $b+b+2, b(b+2)$   - $2 a-2, a^{2}-2 a$   Shows or implies the use of expressions for $a$ and $b$ involving only one of the two variables eg   - $b, b+2$   - $a, a-2$   - $2 b+2$   - $a^{2}-2 a$   or   Shows a different correct equation involving both the variables $a$ and $b$   eg $a+b=a b$	$\checkmark$ Minimally acceptable justification   eg $\text { -2b+2} \begin{aligned} & =b^{2}+2 b \\ 2 & =b^{2} \end{aligned}$   ! Variables $\boldsymbol{a}$ and $\boldsymbol{b}$ transposed but justification otherwise completely correct eg $\begin{aligned} a+a+2 & =a(a+2) \\ 2 a+2 & =a^{2}+2 a \\ 2 & =a^{2} \\ a & =\sqrt{ } 2 \end{aligned}$   Mark as $1,1,0$   ! Numerical examples given Ignore


Tier \& Question		Refer to the new algebra general guidance		Temperature
3-5 4-6	5-7 6-8			
	25		Correct response	Additional guidance
		2m   or   1m	Gives the value 10   and   shows or implies a correct method for solving algebraically   eg $\begin{aligned} \frac{9 C}{5}+32 & =2 C+30 \\ \frac{9 C}{5} & =2 C-2 \\ 9 C & =10 C-10 \\ 10 & =C \end{aligned}$   - $2 \mathrm{C}-\frac{9 \mathrm{C}}{5}=32-30$ $\begin{aligned} \frac{10 C-9 C}{5} & =2 \\ \frac{C}{5} & =2 \end{aligned}$   Shows or implies a correct first step of algebraic manipulation using a correct equation in terms of C , that either reduces the number of terms or collects unknowns on one side of the equation and numbers on the other eg   - $\frac{9 \mathrm{C}}{5}+2=2 \mathrm{C}$   - $0.2 \mathrm{C}+30=32$   - $2 \mathrm{C}-\frac{9 \mathrm{C}}{5}=32-30$   - $\frac{C}{5}=2$   - $2 \times 5$	$\times$ Method used is trial and improvement

Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Average heights	12
2				Making 24	12
3				Write a number	13
4				3-D shapes	13
5				Digits	14
6				Different shapes	15
7				Food and drink	16
8	1			Number lines	16
9	2			Shapes	17
10	3			Computation	17
11	4			Scales	18
12	5			Range of ages	19
13	6			Placing fractions	20
14	7			Survey results	21
15	8	1		Percentages	22
16	9	2		Rotating	23
17	10	3		What is my number?	24
18	11	4		Completing	24
19	12	5		Mean and median	25
20	13	6		Angles	26
21	14	7		Equations	26
22	15	8		Long multiplication	27
23	16	9	1	Midpoint	27
	17	10	2	Square cut	28
	18	11	3	Making zero	29
	19	12	4	Cuboid	30
	20	13	5	Dividing fractions	31
	21	14	6	Solving an equation	32
	22	15	7	Angle $p$	32
	23	16	8	Speed bumps	33
	24	17	9	Straight line graph	34
		18	10	64	35
		19	11	Sixths	36
		20	12	Tyres	37
		21	13	Which triangles?	38


Tier				Question	Page
	$\mathbf{4 - 6}$	$\mathbf{5 - 7}$	$\mathbf{6 - 8}$		
		22	14	Sweet peas	39
		23	15	How many digits?	40
		24	16	Simultaneous	41
		25	17	Angle bisector	42
			18	Star shapes	43
			19	Straight lines	43
			20	Acorns	44
			21	Standard form	46
			22	Data sets	47
			23	Drawing a rhombus	47
			24	$a$ and $b$	48
			25	Temperature	49

